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NEWS FEATURE

Exposing the exposome to elucidate disease
Environmental factors, not genes constitute most disease risk. Myriad approaches are

attempting to use the latest science and technology to more clearly reveal the complex mix

of pollutants that contribute.

Carolyn Beans, Science Writer

Google Street View cars traversing the roads of
Oakland, CA, once captured a picture that goes be-
yond the usual map. On weekdays for 1 year starting
in May 2015, two cars equipped with air pollution
sensors drove city streets repeatedly. They produced
a detailed view of air pollutant levels that differed
greatly even within a given block (1). It’s the sort of
high-resolution detection that promises to greatly im-
prove our understanding of how the environment af-
fects our health. “Being able to understand how our
exposures vary at the scales we live gives us a new,

powerful tool to better understand health impacts and
also be able to mitigate them,” says Steven Hamburg,
chief scientist at the Environmental Defense Fund.

Approximately 70 to 90% of disease risks are likely
attributable to differences in environments (2), as sug-
gested by studies of twins and research tracking groups
that move from nations of low to high disease risk (3).
In 2005, Christopher Wild, now director of the Inter-
national Agency for Research onCancer, coined the term
“exposome” to describe the full suite of environmental
exposures that a human experiences throughout life,

Google isn’t only driving through neighborhoods to update its maps. This car, equipped with an air pollutant sensor,
traveled through the streets of Oakland in 2014 and 2015 to get detailed readings of nitric oxide, nitrogen dioxide, and
black carbon particles. Image courtesy of Aclima/Google.
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starting at conception (4). These exposures include ev-
erything from infections, lifestyle, and stress to radiation,
drugs, and pollution, which can all translate into chemical
changes within the body that affect health.

Researchers have measured environmental expo-
sures for decades. But new technologies are allowing
Hamburg and others to capture an increasingly de-
tailed view of those exposures at many scales—from
satellites that sense chemicals across the United
States, to biomarker studies that search for indicators
of exposure within the body itself. Some studies focus
on a single chemical, whereas others seek to reveal a
bigger portion of the exposome, detecting exposures
to hundreds of chemicals at once. In both fine and
broad strokes, these studies bring researchers nearer
to pinpointing the roots of disease. But each individ-
ual’s collection of environmental exposures is diverse,
with myriad interacting and changing components,
whose direct influences on health are often unclear.

Pollutants, Block by Block
A couple of decades ago, Hamburg often sat on his
porch in Providence, RI, wondering how the power
plant down the street affected the health of his then
young daughter. The plant burned Number 6 oil, a
fuel known to release air pollutants. The Environ-
mental Protection Agency and other regulatory agen-
cies maintain air quality monitors across the United
States. But these stationary sensors are too dispersed to
provide data on differences within communities that
might affect individuals. “What was the impact on the

neighborhood?” Hamburg still wonders. “We didn’t
see black smoke, but we didn’t know.”

The plant has since switched to natural gas. But
Hamburg still wants to know which chemicals people are
exposed to, in what quantities, and from what sources.
His goal for his Google Street View study was to begin to
answer that question for the people of Oakland.

Industrial areas and warehouses sit beside resi-
dential homes in many parts of the city, and three
major interstate highways and a container port sur-
round West Oakland. But until pollution levels are
directly measured on the scale at which people live,
it’s difficult to know where pollution hotspots really lie.
“In some cases, it’s going to be the big plant or a big
highway,” says Hamburg. “In other cases, it could be
more localized sources.” Boilers in homes, malfunc-
tioning automotive engines, or poorly timed traffic
lights that leave cars idling could all cause pollution.

Hamburg teamed up with Google Earth Outreach,
researchers from the University of Texas at Austin and
other institutions, and Aclima, Inc., an environmental-
sensor technology company whose platform mea-
sured and logged nitric oxide, nitrogen dioxide, and
black carbon particles from atop the cars every second
along the routes.

The team found higher levels of these pollutants
along busy streets and highways. But it also found
localized hotspots. Even within a city block, pollutant
concentrations could vary by more than five times, and
the patterns remained stable throughout the year.
Researchers searched the accompanying Google

In Oakland, air pollutant levels of black carbon (BC), nitric oxide (NO), and nitrogen dioxide (NO2) can vary greatly within
a single city block, even as the patterns of pollution remain stable throughout the year. Redder shading indicates higher
concentrations of pollutants. The area within the blue squares (Top) is shown in detail in the aerial photographs
(Bottom). Reproduced with permission from ref. 1 © (2017) American Chemical Society; images © 2016 Google, map
data © 2016 Google.
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Street View images for localized pollutant sources and
saw many candidates—an intersection with heavy
truck traffic, a car dealership offering a smog-check
service, a major intersection with nearby parking
lots, and a drive-through restaurant.

The researchers shared their findings with com-
munity groups such as the West Oakland Environ-
mental Indicators Project (WOEIP). Margaret Gordon,
West Oakland resident and cofounder of WOEIP, says
her group has taken their own air quality measure-
ments using hand-held sensors provided by Intel. The
Google Street View data agreed with their findings
but were more comprehensive and, according to
Gordon, gave them more leverage. WOEIP is using
the pollution map to lobby city governments, hoping
that they’ll require businesses to mitigate pollutants or
move away from residential areas.

Under a new California bill known as AB 617, air
quality regulatory agencies will now be monitoring air
quality at a more localized rather than regional scale,
in direct collaboration with community organizations
such as the WOEIP. The Bay Area Air Quality Man-
agement District (BAAQMD), which regulates station-
ary sources of air pollution in the counties surrounding
San Francisco Bay, is working with the WOEIP on an
emissions-reduction plan for the West Oakland com-
munity. Their steering committee met for the first time in
July 2018. “What the Google-Aclima study does is allow
us to focus on potential hotspots that the study out-
lined,” says Eric Stevenson, director of the BAAQMD’s
Division of Meteorology andMeasurement. If it turns out
that there is, for example, a major distribution center at
one of the hotspots, “we can take action to try to modify
truck routes or work with the facility to modify operating
hours or things of that nature that will help reduce
emissions in that area,” says Stevenson.

Wristbands and Satellites
As researchers try to paint a more complete picture of
the chemicals people encounter, various other efforts
have started to collect exposure data at different
spatial scales. Looking to home in on exposures in in-
dividuals, Kim Anderson, a professor of environmental
and molecular toxicology at Oregon State University,
has been using silicone wristbands, such as those that
the Livestrong movement popularized, to sample
chemicals in wearers’ environments since 2014 (5). Sili-
cone absorbs organic chemicals much like fat does, so
chemicals passively enter the wristbands as wearers go
about their days. Anderson’s team then extracts the
chemicals and identifies them using gas chromatography–
mass spectrometry, and they can screen for more than
1,500 organic chemicals at once (6).

“What we see in our studies is there is a vast dif-
ference for individuals even within the same commu-
nity,” says Anderson. Her team found, for example,
that each of 35 farmers in Diender, Senegal, who wore
the wristbands for up to 5 days, had their own unique
pesticide exposure profiles (7). When she asked par-
ticipants to wear the wristbands for another period of
up to 5 days, their individual results remained the
same. The farmers were exposed to a wide range of

pesticides, including dichlorodiphenyltrichloroethane
(commonly known as DDT), cypermethrin, and delta-
methrin. The study picked up 6 pesticides that the
farmers reported using, as well as an additional 19
pesticides that they were unknowingly handling.

Looking to take advantage of a more expansive
view, other researchers are using satellites to remotely
sense chemicals via spectrophotometry. In a study
published last year, researchers harnessed data col-
lected by the Ozone Monitoring Instrument satellite
sensor, part of NASA’s Aura mission, every day over a
12-year period to map concentrations of formalde-
hyde, a carcinogen, across the contiguous United
States (8). Although the satellite sampled vertical
columns of approximately 13 × 24 kilometers, the re-
searchers deduced formaldehyde levels at a finer
resolution—5 × 5 kilometers—by analyzing the spaces
where column measurements overlapped in subse-
quent readings. “We see the highest levels over the
southeastern US,” says lead author Lei Zhu, a post-
doctoral fellow at Harvard University’s Atmospheric
Chemistry Modeling Group.

But the culprit doesn’t appear to be manmade.
“You have a lot of trees over there, especially the
broadleaf trees—the main outdoor source of formal-
dehyde in the US,” Zhu explains. The team then
inferred the cancer risk associated with outdoor
formaldehyde exposure across the United States by
combining their findings with the same unit risk esti-
mate for formaldehyde inhalation used by the Envi-
ronmental Protection Agency.

Soon, researchers exploring pollutant exposure
will have even finer-scale satellite data to draw on. As
early as next year, NASA and the Smithsonian Astro-
physical Observatory will launch a new instrument
known as TEMPO (Tropospheric Emissions: Monitor-
ing Pollution) that will capture air pollutant data hourly
at an unprecedented spatial resolution of several
square kilometers (9). Zhu notes that researchers har-
nessing data from this new satellite could use the
same oversampling technique that his team used to
further drill down in scale.

Hoping for even better exposure resolution, some
work aims to identify biomarkers in biological samples
that indicate a response to exposure (10). By analyzing
blood or urine samples, for example, researchers can
identify chemicals resulting from current exposures.
Meanwhile, others are also exploring the biological
signatures of past exposures, such as modified pro-
teins that can indicate exposure to a chemical that
occurred up to approximately 2 months before (11).

Through the Children’s Health Exposure Analysis
Resource (CHEAR), for example, the National Institute
of Environmental Health Sciences (NIEHS) is working to
reveal the associations between environmental expo-
sures and the health and development of children.
Some CHEAR-supported researchers are searching for
links between biomarkers of exposure and health out-
comes. One recent study of 439 pregnant women
showed an association between biomarkers in urine that
indicate exposure to phenols and parabens and altered
thyroid hormone levels (12).
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“We are not going to be able to measure every-
thing, always, everywhere, in everybody,” says David
Balshaw, chief of the Exposure, Response, and Tech-
nology Branch at NIEHS. “But expanding our ability to
measure lots of things very frequently, over time and
over space—that is something that we can do and
every day we are improving.”

From Exposure to Risk
The challenge of measuring exposures looms large,
in part, because of the sheer volume of unknown
chemicals. Traditionally, researchers test for one or a
few chemicals in an environmental or biological sam-
ple by comparing the sample to an analytical stan-
dard, a pure form of a chemical with known properties.
But requiring a standard means ignoring almost all of
chemical space, says Justin Teeguarden, the chief
scientist for exposure science at the Pacific Northwest
National Laboratory (PNNL), noting past research (13).
A team of researchers at PNNL is now using super-
computing and computational chemistry to predict
the properties of chemicals, allowing researchers to
identify them without analytical standards. They can
predict, for example, properties such as infrared and
nuclear magnetic resonance spectra, which researchers
can measure in real environmental samples using com-
mon laboratory instruments.

Even once researchers better understand expo-
sure, they must tackle the tough task of determining
how chemicals affect health. Members of Hamburg’s
team recently collaborated with researchers from
Kaiser Permanente Northern California to link the
Google Street View pollutant data with Oakland resi-
dents’ health records. In May 2018, the team reported
that, for elderly citizens, there was a correlation be-
tween higher air pollutant levels at residences and
an increased risk of cardiovascular events (14). Many
previous studies found similar results, says senior

author, epidemiologist Stephen Van Den Eeden, a
researcher at Kaiser Permanente Northern California.
But his team required far fewer participants. “Even
though we had roughly 41,000 individuals, many
studies used hundreds of thousands or even mil-
lions,” he says. The Google Street View data get
“much closer to what people really experience at
their homes,” he says. By zeroing in on exposure
levels, their team found answers with more modest
costs and fewer logistical challenges than studies
that assemble a massive number of participants. But
although this study demonstrates a clear correlation,
it, like similar epidemiological studies, does not dem-
onstrate direct health effects of the pollutants.

Looking to come closer to connecting external ex-
posure readings with internal consequences, Anderson’s
team asked 22 pregnant women to wear silicone wrist-
bands for 48 hours. The team then compared the poly-
cyclic aromatic hydrocarbons sampled by the
wristbands with metabolites in the women’s urine
that the body produces in an attempt to detoxify these
chemicals. In May 2018, the team reported correlations
between exposure data and these metabolite bio-
markers (15). But even in this case, the exact risk these
chemicals pose to the participants’ health is unclear.
“The brass ring is health outcomes,” says Anderson.
“The urine doesn’t tell you that you have a disease
end point, but it does tell you that you’ve had
an exposure.”

Despite the challenges, researchers continue to ac-
cumulate increasingly detailed data on environmental
exposure. Hamburg’s team recently finished collecting
Google Street View pollution data in Houston that they
will once again use to produce a pollution map of the
city. And in June 2018, they announced that London is
next. “We believe firmly,” says Hamburg, “that making
the invisible visible empowers people.”
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